By Topic

Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jie Shi ; North China Electric Power University, Beijing, China ; Wei-Jen Lee ; Yongqian Liu ; Yongping Yang
more authors

Due to the growing demand on renewable energy, photovoltaic (PV) generation systems have increased considerably in recent years. However, the power output of PV systems is affected by different weather conditions. Accurate forecasting of PV power output is important for system reliability and promoting large-scale PV deployment. This paper proposes algorithms to forecast power output of PV systems based upon weather classification and support vector machines (SVM). In the process, the weather conditions are divided into four types which are clear sky, cloudy day, foggy day, and rainy day. In this paper, a one-day-ahead PV power output forecasting model for a single station is derived based on the weather forecasting data, actual historical power output data, and the principle of SVM. After applying it into a PV station in China (the capability is 20 kW), results show the proposed forecasting model for grid-connected PV systems is effective and promising.

Published in:

IEEE Transactions on Industry Applications  (Volume:48 ,  Issue: 3 )