By Topic

Distributed geographical packet forwarding in wireless sensor and actuator networks - a stochastic optimal control approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Yu ; Faculty of Automation, Guangdong University of Technology, Guangzhou 510640, People's Republic of China ; Y. Zhang ; K. Yang ; S. Xie
more authors

The authors study the issues on distributed geographical packet forwarding in wireless sensor and actuator networks (WSANs) using a stochastic optimal control approach. First, a distributed geographic-informed forwarding (DGIF) scheme is proposed that defines a set of distributed routing policies. Then, the distributed WSAN packet forwarding problem is modelled and analysed from the perspective of stochastic optimal control. The WSAN is viewed as a controlled stochastic system. The routing procedure is determined by the routing policy and system disturbance (e.g. the position uncertainty of remote nodes) jointly. An improved value iteration method is presented to accelerate the convergence of the optimal routing strategy. The reliability-driven routing algorithm (called DGIF-RRP) for emergency applications and the quality-of-service-aware routing algorithm (called DGIF-QRP) for real-time applications are proposed. Simulations are carried out to evaluate the proposed routing algorithms. The results show that DGIF-RRP and DGIF-QRP significantly outperform two enhanced versions of the Dijkstra's algorithm in emergency and real-time applications, respectively.

Published in:

IET Wireless Sensor Systems  (Volume:2 ,  Issue: 1 )