By Topic

Skewing-based method for reduction of functional crosstalk and power supply noise caused by on-chip buses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Tuuna ; Department of Information Technology, University of Turku ; J. Isoaho ; H. Tenhunen

In this study, the authors present an optimisation method based on analytical resistance, inductance and capacitance (RLC) models for simultaneous reduction of both functional crosstalk noise and power supply noise caused by on-chip buses. This is achieved by intentional skewing of the relative timing of adjacent wires. The method is applicable to any number of bus wires and it takes into account both capacitive and inductive coupling between wires. The authors model the effect of skewing on both functional crosstalk in a distributed RLC bus and the power noise in the surrounding RLC power distribution network. The model is verified by comparing it with HSPICE in 65 nm technology, with the average error being 1.4%. The capability of the method in reducing problematic long-range inductive crosstalk noise is demonstrated in a case study where the maximum crosstalk noise is reduced from 0.20 to 0.05 V. Implementation and the use of the method in combination with other crosstalk reduction methods and power supply noise reduction methods are presented. The influence of the number of different skewing times is analysed.

Published in:

IET Computers & Digital Techniques  (Volume:6 ,  Issue: 2 )