By Topic

Generalized Block-Lifting Factorization of M -Channel Biorthogonal Filter Banks for Lossy-to-Lossless Image Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taizo Suzuki ; Department of Electrical and Electronic Engineering, College of Engineering, Nihon University, Koriyama, Japan ; Masaaki Ikehara ; Truong Q. Nguyen

Generalized block-lifting factorization of M-channel (M >; 2) biorthogonal filter banks (BOFBs) for lossy-to-lossless image coding is presented in this paper. Since the proposed block-lifting structure is more general than the conventional lifting factorizations and does NOT require many restrictions such as paraunitary, number of channels, and McMillan degree in each building block unlike the conventional lifting factorizations, its coding gain is higher than that of the previous methods. Several proposed BOFBs are designed and applied to image coding. Comparing the results with conventional lossy-to-lossless image coding structures, including the 5/3- and 9/7-tap discrete wavelet transforms in JPEG 2000 and a 4 × 8 hierarchical lapped biorthogonal transform in JPEG XR, the proposed BOFBs achieve better result in both objective measure and perceptual visual quality for the images with a lot of high-frequency components.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 7 )