By Topic

Perceptual Image Hashing Based on Shape Contexts and Local Feature Points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xudong Lv ; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada ; Z. Jane Wang

Local feature points have been widely investigated in solving problems in computer vision, such as robust matching and object detection. However, its investigation in the area of image hashing is still limited. In this paper, we propose a novel shape-contexts-based image hashing approach using robust local feature points. The contributions are twofold: 1) The robust SIFT-Harris detector is proposed to select the most stable SIFT keypoints under various content-preserving distortions. 2) Compact and robust image hashes are generated by embedding the detected local features into shape-contexts-based descriptors. Experimental results show that the proposed image hashing is robust to a wide range of distortions and attacks, due to the benefits of robust salient keypoints detection and the shape-contexts-based feature descriptors. When compared with the current state-of-the-art schemes, the proposed scheme yields better identification performances under geometric attacks such as rotation attacks and brightness changes, and provides comparable performances under classical distortions such as additive noise, blurring, and compression. Also, we demonstrate that the proposed approach could be applied for image tampering detection.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:7 ,  Issue: 3 )