By Topic

Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS Receiver With Diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Haolu Xie ; Fujitsu Semicond. Wireless Products Inc., Tempe, AZ, USA ; Oliaei, O. ; Rakers, P. ; Fernandez, R.
more authors

A single-chip multimode multiband receiver is designed and implemented in a 90-nm CMOS process for fourth-generation mobile platforms. The receiver includes nine primary low-noise amplifier (LNA) and five secondary LNA input ports, and supports long-term evolution (LTE)/WCDMA/ehanced general packet radio serve (EGPRS) standards for four gobal system for mobile communications bands, ten WCDMA bands, 14 frequency division duplex LTE band, and two time division duplex LTE bands. From antenna to RX digital signal processing output, the receiver achieves a typical 3-dB noise figure for all standards and bands. The RF front-end includes a matching network with 12-dB transducer gain, an inductively degenerated common-source LNA, passive mixers driven by a 25% duty-cycle local oscillate, and a current conveyor followed by a baseband filter. This receiver RF/analog front-end meets surface-acoustic-wave-less linearity requirements for all LTE/WCDMA bands and employs digital calibration to adjust the baseband low-pass filter cutoff frequency, mixer image rejection, second-order intermodulation intercept point performance and to perform in-phase/quadrature equalization.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 5 )