By Topic

A Discrete Evolutionary Model for Chess Players' Ratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fenner, T. ; Dept. of Comput. Sci. & Inf. Syst., Univ. of London, London, UK ; Levene, M. ; Loizou, G.

The Elo system for rating chess players, also used in other games and sports, was adopted by the World Chess Federation over four decades ago. Although not without controversy, it is accepted as generally reliable and provides a method for assessing players' strengths and ranking them in official tournaments. It is generally accepted that the distribution of players' rating data is approximately normal but, to date, no stochastic model of how the distribution might have arisen has been proposed. We propose such an evolutionary stochastic model, which models the arrival of players into the rating pool, the games they play against each other, and how the results of these games affect their ratings, in a similar manner to the Elo system. Using a continuous approximation to the discrete model, we derive the distribution for players' ratings at time t as a normal distribution, where the variance increases in time as a logarithmic function of t. We validate the model using published rating data from 2007-2010, showing that the parameters obtained from the data can be recovered through simulations of the stochastic model. The distribution of players' ratings is only approximately normal and has been shown to have a small negative skew. We show how to modify our evolutionary stochastic model to take this skewness into account, and we validate the modified model using the published official rating data.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:4 ,  Issue: 2 )