By Topic

Morphology-Based Automatic Seizure Detector for Intracerebral EEG Recordings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Yadav ; Center for Signal Processing and Communications, Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada ; A. K. Shah ; J. A. Loeb ; M. N. S. Swamy
more authors

In this paper, a new seizure detection system aimed at assisting in a rapid review of prolonged intracerebral EEG recordings is described. It is based on quantifying the sharpness of the waveform, one of the most important electrographic EEG features utilized by experts for an accurate and reliable identification of a seizure. The waveform morphology is characterized by a measure of sharpness as defined by the slope of the half-waves. A train of abnormally sharp waves resulting from subsequent filtering are used to identify seizures. The method was optimized using 145 h of single-channel depth EEG from seven patients, and tested on another 158 h of single-channel depth EEG from another seven patients. Additionally, 725 h of depth EEG from 21 patients was utilized to assess the system performance in a multichannel configuration. Single-channel test data resulted in a sensitivity of 87% and a specificity of 71%. The multichannel test data reported a sensitivity of 81% and a specificity of 58.9%. The new system detected a wide range of seizure patterns that included rhythmic and nonrhythmic seizures of varying length, including those missed by the experts. We also compare the proposed system with a popular commercial system.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:59 ,  Issue: 7 )