By Topic

640 Gb/s All-Optical Regenerator Based on a Periodically Poled Lithium Niobate Waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bogoni, A. ; Integrated Res. Center for Photonic Networks & Technol., Consorzio Naz. Interuniv. per le Telecomun., Pisa, Italy ; Xiaoxia Wu ; Nuccio, S.R. ; Willner, A.E.

640 Gb/s all-optical ON-OFF keying signal regeneration based on nonlinearities in a periodically poled lithium niobate (PPLN) waveguide is demonstrated and characterized. The data are transferred from the distorted original optical time division multiplexing (OTDM) signal onto a high quality and locally generated 640 GHz clock by pump depletion simultaneously operating a wavelength conversion. The thresholding behavior and the saturation effect of pump depletion in the PPLN waveguide for low and high pump power values, respectively, allow for a noise compression on the wavelength-converted replica of the original signal. The use of a stable clock with a shorter pulsewidth also allows for a sort of sampling of the original OTDM frame in the bit time center, resulting in a pulse reshaping that eliminates all noise contributions on the pulse tails. This operation produces a reduction of the original time jitter of the signal. The sampling operation also results in a compression of the new OTDM frame pulses compensating for the residual chromatic dispersion effects. After having characterized the transfer function of the proposed regeneration scheme, we evaluate its effectiveness as a function of optical signal-to-noise ratio (OSNR), pulse broadening, and time jitter of the input signal. Regeneration performance is measured in terms of bit error rate (BER) and power penalty @ BER = 10-9. Error-free operation can be recovered and maintained over an input signal OSNR range of 8 dB. This results in a BER improvement up to several orders of magnitude, obtained when the input OSNR is reduced by 20 dB with respect to the baseline. The time jitter of input signals with original jitter values from 100 to 300 fs has been reduced of nearly one order of magnitude to values lower than 40 fs. We also demonstrate that a pulse broadening up to 20% of the original pulsewidth can be compensated. Finally, wavelength tunability of the regenerator input and output signal can be, in princi- le, guaranteed over the whole C-band and beyond.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 12 )