By Topic

Relay Precoding for Non-Regenerative MIMO Relay Systems with Partial CSI Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheol Jeong ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON, Canada ; Bangwon Seo ; Seong Ro Lee ; Hyung-Myung Kim
more authors

We consider a relay precoding problem in a non-regenerative multiple-input multiple-output (MIMO) relay system, where the relay has the perfect channel state information of the source-relay link and only the covariance information of the relay-destination link. The average capacity seen by the relay is maximized under a relay transmit power constraint. The relay precoding problem is transformed to its equivalent power allocation problem at the relay. The optimal power allocation solution is then derived by formulating the optimization problem via difference of convex (DC) functions programming. To reduce the computational complexity, we also propose a suboptimal scheme by modifying the naive Jensen method. Furthermore, we propose the maximum eigenmode relaying (MER) scheme, which allocates the relay transmit power only to the maximum eigenmode. A necessary and sufficient condition for the MER to be asymptotically optimal is derived in the high signal-to-noise ratio (SNR) regime of the source-relay link. The performance of the proposed schemes is investigated through extensive numerical simulations.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 5 )