By Topic

Self-tuning batching in total order broadcast protocols via analytical modelling and reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paolo Romano ; INESC-ID, Lisbon, Portugal ; Matteo Leonetti

Batching is a well known technique to boost the throughput of Total Order Broadcast (TOB) protocols. Unfortunately, its manual configuration is not only a time consuming process, but also a very delicate one, as incorrect settings of the batching parameter can lead to severe performance degradation. In this paper we address precisely this issue, by presenting an innovative mechanism for self-tuning the batching level in TOB protocols. Our solution combines analytical modeling and reinforcement learning techniques, taking the best of these two worlds: drastic reductions of the learning time and the ability to correct inaccurate predictions by accumulating feedback from the operation of the system.

Published in:

Computing, Networking and Communications (ICNC), 2012 International Conference on

Date of Conference:

Jan. 30 2012-Feb. 2 2012