By Topic

Cloud computing infrastructure robustness: A game theory approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

A cloud computing infrastructure typically consists of a number of sites that house servers and are connected to the Internet. Its operation critically depends both on cyber components, including servers and routers, and physical components, including fiber and power routes. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure. The cyber and physical components may be individually attacked and defended, and the infrastructure is required to provide an aggregate computational capacity C. We present a game-theoretic approach for the provisioning and operation of the infrastructure under uniform cost models. We first show that the Nash Equilibrium under different formulations to be computable in polynomial time, and derive provisioning choices to ensure the capacity C with probability PS. Then, we derive conditions for reinforcing the infrastructure, and show that higher robustness levels are achieved by limiting the disclosure of information about the infrastructure.

Published in:

Computing, Networking and Communications (ICNC), 2012 International Conference on

Date of Conference:

Jan. 30 2012-Feb. 2 2012