By Topic

Stability of Shift-Varying 2-D State-Space Digital Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Glen W. Mabey ; Southwest Research Institute, San Antonio ; Tamal Bose ; Mei-Qin Chen

Stability conditions for 2-D shift-varying systems are presented. The shift-varying nature of such systems emerges in applications such as adaptive filtering or adaptive image processing, where the coefficients are neither static nor periodic. The forms considered in this paper are the Givone-Roesser and the Fornasini-Marchesini models, both of which are discrete 2-D state-space filters. The sufficient conditions for BIBO stability that are proven herein are an outgrowth of the 1-D time-varying state-space conditions that have been previously established. The nature of feedback in the 2-D space is explored and found to be much more complex than for the 1-D case. However, it is also shown that when every feedback path is guaranteed to satisfy a variation on exponential stability, then BIBO stability of these two models can be assured. Further conditions are also established which engage the Lyapunov equation and guarantee the exponential stability requirement.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:59 ,  Issue: 7 )