By Topic

Intelligent OLSR Routing Protocol Optimization for VANETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jamal Toutouh ; Departamento de Lenguajes y Ciencias de la Computación, University of Málaga , Málaga, Spain ; José Garcia-Nieto ; Enrique Alba

Recent advances in wireless technologies have given rise to the emergence of vehicular ad hoc networks (VANETs). In such networks, the limited coverage of WiFi and the high mobility of the nodes generate frequent topology changes and network fragmentations. For these reasons, and taking into account that there is no central manager entity, routing packets through the network is a challenging task. Therefore, offering an efficient routing strategy is crucial to the deployment of VANETs. This paper deals with the optimal parameter setting of the optimized link state routing (OLSR), which is a well-known mobile ad hoc network routing protocol, by defining an optimization problem. This way, a series of representative metaheuristic algorithms (particle swarm optimization, differential evolution, genetic algorithm, and simulated annealing) are studied in this paper to find automatically optimal configurations of this routing protocol. In addition, a set of realistic VANET scenarios (based in the city of Málaga) have been defined to accurately evaluate the performance of the network under our automatic OLSR. In the experiments, our tuned OLSR configurations result in better quality of service (QoS) than the standard request for comments (RFC 3626), as well as several human experts, making it amenable for utilization in VANET configurations.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:61 ,  Issue: 4 )