By Topic

Adapting the Right Measures for Pattern Discovery: A Unified View

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Junjie Wu ; School of Economics and Management and Information Systems Department, Beihang University, Beijing, China ; Shiwei Zhu ; Hui Xiong ; Jian Chen
more authors

This paper presents a unified view of interestingness measures for interesting pattern discovery. Specifically, we first provide three necessary conditions for interestingness measures being used for association pattern discovery. Then, we reveal one desirable property for interestingness measures: the support-ascending conditional antimonotone property (SA-CAMP). Along this line, we prove that the measures possessing SA-CAMP are suitable for pattern discovery if the itemset-traversal structure is defined by a support-ascending set enumeration tree. In addition, we provide a thorough study on the family of the generalized mean (GM) measure and show their appealing properties, which are exploited for developing the GMiner algorithm for finding interesting association patterns. Finally, experimental results show that GMiner can efficiently identify interesting patterns based on SA-CAMP of the GM measure, even at an extremely low level of support.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 4 )