By Topic

A K-band CMOS Differential Vackar VCO With the Gate Inductive Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tai Nghia Nguyen ; Coll. of Electron. & Inf., Kyung Hee Univ., Suwon, South Korea ; Jong-Wook Lee

This brief presents a K-band differential Vackar voltage-controlled oscillator (VCO) with gate inductive feedback which enhances negative impedance and thus simplifies the startup condition. Simple analysis and simulations examine the transistor loading effect and amplitude stability. Results indicate that the Vackar VCO has improved amplitude stability compared to the Colpitts VCO. The improved amplitude stability is favorable for suppressing amplitude-to-phase noise conversion. The Vackar VCO was implemented in a 0.13- RF CMOS process. The oscillation frequency ranged from 19 to 19.95 GHz. The measured phase noise at 1-MHz offset was 103 dBc/Hz at 19.5 GHz with a figure of merit of 182 dB.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:59 ,  Issue: 5 )