By Topic

Universal no reference image quality assessment metrics based on local dependency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fei Gao ; School of Electronic Engineering, Xidian University, Xi'an 710071, China ; Xinbo Gao ; Dacheng Tao ; Xuelong Li
more authors

No reference image quality assessment (NR-IQA) is to evaluate image quality blindly without the ground truth. Most of the emerging NR-IQA algorithms are only effective for some specific distortion. Universal metrics that can work for various categories of distortions have hardly been explored, and the algorithms available are not fully adequate in performance. In this paper, we study the local dependency (LD) characteristic of natural images, and propose two universal NR-IQA metrics: LD global scheme (LD-GS) and LD two-step scheme (LD-TS). We claim that the local dependency characteristic among wavelet coefficients is disturbed by various distortion processes, and the disturbances are strongly correlated to image qualities. Experimental results on LIVE database II demonstrate that both the proposed metrics are highly consistent with the human perception and outpace the state-of-the-art NR-IQA indexes and some full reference quality indicators for diverse distortions and across the entire database.

Published in:

The First Asian Conference on Pattern Recognition

Date of Conference:

28-28 Nov. 2011