By Topic

Spatio-Temporal Interest Points Chain (STIPC) for activity recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fei Yuan ; National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China ; Gui-Song Xia ; Hichem Sahbi ; Veronique Prinet

We present a novel feature, named Spatio-Temporal Interest Points Chain (STIPC), for activity representation and recognition. This new feature consists of a set of trackable spatio-temporal interest points, which correspond to a series of discontinuous motion among a long-term motion of an object or its part. By this chain feature, we can not only capture the discriminative motion information which space-time interest point-like feature try to pursue, but also build the connection between them. Specifically, we first extract the point trajectories from the image sequences, then partition the points on each trajectory into two kinds of different yet close related points: discontinuous motion points and continuous motion points. We extract local space-time features around discontinuous motion points and use a chain model to represent them. Furthermore, we introduce a chain descriptor to encode the temporal relationships between these interdependent local space-time features. The experimental results on challenging datasets show that our STIPC features improves local space-time features and achieve state-of-the-art results.

Published in:

The First Asian Conference on Pattern Recognition

Date of Conference:

28-28 Nov. 2011