By Topic

Design Techniques for NBTI-Tolerant Power-Gating Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Calimera, A. ; Dipt. di Autom. e Inf., Politec. di Torino, Torino, Italy ; Macii, E. ; Poncino, M.

While negative bias temperature instability (NBTI) effects on logic gates are of major concern for the reliability of digital circuits, they become even more critical when considering the components for which even minimal parametric variations impact the lifetime of the overall circuit. pMOS header transistors used in power-gated architectures are one relevant example of such components. For these types of devices, an NBTI-induced current capability degradation translates into a larger -drop effect on the virtual- rail, which unconditionally affects the performance and, thus, the reliability of all power-gated cells. In this brief, we address the problem of designing NBTI-tolerant power-gating architectures. We propose a set of efficient NBTI-aware circuit design solutions, including both static and dynamic strategies, that aim at improving the lifetime stability of power-gated circuits by means of oversizing, body biasing, and stress-probability reduction while minimizing the design overheads. Experimental results prove the effectiveness of such techniques when applied to a suite of benchmarks mapped onto a 45-nm industrial CMOS technology library. In particular, we prove that it is possible to achieve more than ten times of lifetime extension with respect to a traditional power-gating approach.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:59 ,  Issue: 4 )