By Topic

Leakage Current Reduction in a Single-Phase Bidirectional AC–DC Full-Bridge Inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong Dong ; Center for Power Electron. Syst., Virginia Tech, Blacksburg, VA, USA ; Fang Luo ; Boroyevich, D. ; Mattavelli, P.

The leakage current in grid-interface converter systems presents a considerable issue in regard to safety and efficiency. The full-bridge inverter is a well-accepted topology in single-phase power conversion applications. The high-frequency pulsewidth modulation (PWM) modulation schemes are normally applied to the full-bridge topology for smaller ac filter size, which, however, generates a high-frequency dc-side leakage current, resulting in an enormous negative impact on dc components, such as photovoltaic panels and energy storage elements. In this paper, a modified full-bridge inverter topology to reduce the dc-side leakage current as well as to mitigate the ac-side common-mode electromagnetic interference noise is presented. Several considerations are discussed, such as the PWM modulation and filter design. Compared to the other existing methods, the proposed solution provides a reliable performance for bidirectional operation, minimum additional components, low cost, and a simple design process.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 10 )