Cart (Loading....) | Create Account
Close category search window
 

Unsupervised Salient Object Segmentation Based on Kernel Density Estimation and Two-Phase Graph Cut

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhi Liu ; Sch. of Commun. & Inf. Eng., Shanghai Univ., Shanghai, China ; Ran Shi ; Liquan Shen ; Yinzhu Xue
more authors

In this paper, we propose an unsupervised salient object segmentation approach based on kernel density estimation (KDE) and two-phase graph cut. A set of KDE models are first constructed based on the pre-segmentation result of the input image, and then for each pixel, a set of likelihoods to fit all KDE models are calculated accordingly. The color saliency and spatial saliency of each KDE model are then evaluated based on its color distinctiveness and spatial distribution, and the pixel-wise saliency map is generated by integrating likelihood measures of pixels and saliency measures of KDE models. In the first phase of salient object segmentation, the saliency map based graph cut is exploited to obtain an initial segmentation result. In the second phase, the segmentation is further refined based on an iterative seed adjustment method, which efficiently utilizes the information of minimum cut generated using the KDE model based graph cut, and exploits a balancing weight update scheme for convergence of segmentation refinement. Experimental results on a dataset containing 1000 test images with ground truths demonstrate the better segmentation performance of our approach.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.