Cart (Loading....) | Create Account
Close category search window

Enhanced 3-D Modeling for Landmark Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xian Xiao ; Nat. Lab. of Pattern Recognition (NLPR), Inst. of Autom., Beijing, China ; Changsheng Xu ; Jinqiao Wang ; Min Xu

Landmark image classification is a challenging task due to the various circumstances, e.g., illumination, viewpoint, zoom in/out and occlusion under which landmark images are taken. Most existing approaches utilize features extracted from the whole image including both landmark and non-landmark areas. However, non-landmark areas introduce redundant and noisy information. In this paper, we propose a novel approach to improve landmark image classification consisting of three steps. First, an attention-based 3-D reconstruction method is proposed to reconstruct sparse 3-D landmark models. Second, the sparse 3-D models are projected onto iconic images in order to identify images of the hot regions. For a landmark, hot regions are parts of a landmark which attract photographers' attention and are popularly captured in photos. These hot region images are later used to enhance reconstructed sparse 3-D models. Third, the landmark regions are obtained through mapping the enhanced 3-D models to landmark images. A k-dimensional tree (kd-tree) is then constructed for each landmark based on scale invariant feature transform (SIFT) features extracted from the landmark area to classify unlabeled images into pre-defined landmark categories. The proposed method is evaluated using 291 661 images of 51 landmarks. Experiments of comparison indicate that our method outperforms bag-of-words (BoW) based approach 18.5% and method of spatial-pyramid-matching using sparse-coding (ScSPM) 8.4%.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

Aug. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.