By Topic

Persymmetric Parametric Adaptive Matched Filter for Multichannel Adaptive Signal Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pu Wang ; Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA ; Sahinoglu, Z. ; Man-On Pun ; Hongbin Li

This correspondence considers a parametric approach for multichannel adaptive signal detection in Gaussian disturbance which can be modeled as a multichannel autoregressive (AR) process and, moreover, possesses a persymmetric structure induced by a symmetric antenna geometry. By introducing the persymmetric AR (PAR) modeling for the disturbance, a persymmetric parametric adaptive matched filter (Per-PAMF) is proposed. The developed Per-PAMF extends the classical PAMF by exploiting the underlying persymmetric properties and, hence, improves the detection performance in training-limited scenarios. The performance of the proposed Per-PAMF is examined by the Monte Carlo simulations and simulation results demonstrate the effectiveness of the Per-PAMF compared with the conventional PAMF and nonparametric detectors.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 6 )