Cart (Loading....) | Create Account
Close category search window
 

Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guoxu Zhou ; Lab. for Adv. Brain Signal Process., RIKEN, Wako, Japan ; Cichocki, A. ; Shengli Xie

Nonnegative matrix factorization (NMF) algorithms often suffer from slow convergence speed due to the nonnegativity constraints, especially for large-scale problems. Low-rank approximation methods such as principle component analysis (PCA) are widely used in matrix factorizations to suppress noise, reduce computational complexity and memory requirements. However, they cannot be applied to NMF directly so far as they result in factors with mixed signs. In this paper, low-rank approximation is introduced to NMF (named lraNMF), which is not only able to reduce the computational complexity of NMF algorithms significantly, but also suppress bipolar noise. In fact, the new update rules are typically about times faster than traditional ones of NMF, here is the number of observations and is the low rank of latent factors. Therefore lraNMF is particularly efficient in the case where , which is the general case in NMF. The proposed update rules can also be incorporated into most existing NMF algorithms straightforwardly as long as they are based on Euclidean distance. Then the concept of lraNMF is generalized to the tensor field to perform a fast sequential nonnegative Tucker decomposition (NTD). By applying the proposed methods, the practicability of NMF/NTD is significantly improved. Simulations on synthetic and real data show the validity and efficiency of the proposed approaches.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.