By Topic

Maximum Likelihood Estimation of a Structured Covariance Matrix With a Condition Number Constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Aubry, A. ; Dipt. di Ing. Biomed., Elettron. e delle Telecomun., Univ. degli Studi di Napoli Federico II, Naples, Italy ; De Maio, Antonio ; Pallotta, L. ; Farina, Alfonso

In this paper, we deal with the problem of estimating the disturbance covariance matrix for radar signal processing applications, when a limited number of training data is present. We determine the maximum likelihood (ML) estimator of the covariance matrix starting from a set of secondary data, assuming a special covariance structure (i.e., the sum of a positive semi-definite matrix plus a term proportional to the identity), and a condition number upper-bound constraint. We show that the formulated constrained optimization problem falls within the class of MAXDET problems and develop an efficient procedure for its solution in closed form. Remarkably, the computational complexity of the algorithm is of the same order as the eigenvalue decomposition of the sample covariance matrix. At the analysis stage, we assess the performance of the proposed algorithm in terms of achievable signal-to-interference-plus-noise ratio (SINR) both for a spatial and a Doppler processing. The results show that interesting SINR improvements, with respect to some existing covariance matrix estimation techniques, can be achieved.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 6 )