By Topic

Distributed Power Allocation in Two-Hop Interference Channels: An Implicit-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi Shi ; Department of Electrical and Computer Engineering, University of Victoria, Victoria, B.C. V8W 3P6, Canada ; Khaled Ben Letaief ; Ranjan K. Mallik ; Xiaodai Dong

The problem of distributed power allocation for an interference relay network is considered, where multiple source-relay-destination (S-R-D) links communicate concurrently in the same frequency and interfere over two hops, referred to as a two-hop interference channel. The direct source-destination connections are not considered in this work. Power allocation in this scenario is challenging as it necessitates not only performance tradeoff among multiple links but also power distribution for each link along spatial dimensions. We approach the problem from a game-theoretic perspective and propose a novel implicit-based approach to prove the uniqueness of the Nash equilibrium (NE). This technique complements the existing literature on equilibria analysis by revealing the benefits of expressing the best responses in implicit forms. To benchmark the performance of the NE, we have investigated the non-convex sum-utility maximization problem, and have (1) identified the optimal solution structures; (2) proved that linear pricing is locally optimal in maximizing the sum utilities. A simple and distributed pricing algorithm is then proposed. Simulation results show that for a two-user network, the proposed scheme closely approaches the optimal sum rate, while, for a ten-user network, the improvement is up to 340% compared to the non-cooperative game model without pricing.

Published in:

IEEE Transactions on Wireless Communications  (Volume:11 ,  Issue: 5 )