Cart (Loading....) | Create Account
Close category search window
 

Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Perera, L.P. ; Centre for Marine Technol. & Eng., Tech. Univ. of Lisbon, Lisbon, Portugal ; Oliveira, P. ; Guedes Soares, C.

Maneuvering vessel detection and tracking (VDT), incorporated with state estimation and trajectory prediction, are important tasks for vessel navigational systems (VNSs), as well as vessel traffic monitoring and information systems (VTMISs) to improve maritime safety and security in ocean navigation. Although conventional VNSs and VTMISs are equipped with maritime surveillance systems for the same purpose, intelligent capabilities for vessel detection, tracking, state estimation, and navigational trajectory prediction are underdeveloped. Therefore, the integration of intelligent features into VTMISs is proposed in this paper. The first part of this paper is focused on detecting and tracking of a multiple-vessel situation. An artificial neural network (ANN) is proposed as the mechanism for detecting and tracking multiple vessels. In the second part of this paper, vessel state estimation and navigational trajectory prediction of a single-vessel situation are considered. An extended Kalman filter (EKF) is proposed for the estimation of vessel states and further used for the prediction of vessel trajectories. Finally, the proposed VTMIS is simulated, and successful simulation results are presented in this paper.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.