By Topic

Capacity Region of Vector Gaussian Interference Channels With Generally Strong Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaohu Shang ; Bell-Labs., Alcatel-Lucent, Holmdel, NJ, USA ; Poor, H.V.

An interference channel is said to have strong interference if a certain pair of mutual information inequalities are satisfied for all input distributions. These inequalities assure that the capacity of the interference channel with strong interference is achieved by jointly decoding the signal and the interference. This definition of strong interference applies to discrete memoryless, scalar and vector Gaussian interference channels. However, there exist vector Gaussian interference channels that may not satisfy the strong interference condition but for which the capacity can still be achieved by jointly decoding the signal and the interference. This kind of interference is called generally strong interference. Sufficient conditions for a vector Gaussian interference channel to have generally strong interference are derived. The sum-rate capacity and the boundary points of the capacity region are also determined.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 6 )