Cart (Loading....) | Create Account
Close category search window
 

A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Esser, E. ; Dept. of Math., Univ. of California at Irvine, Irvine, CA, USA ; Moller, M. ; Osher, S. ; Sapiro, G.
more authors

A collaborative convex framework for factoring a data matrix X into a nonnegative product AS , with a sparse coefficient matrix S, is proposed. We restrict the columns of the dictionary matrix A to coincide with certain columns of the data matrix X, thereby guaranteeing a physically meaningful dictionary and dimensionality reduction. We use l1, ∞ regularization to select the dictionary from the data and show that this leads to an exact convex relaxation of l0 in the case of distinct noise-free data. We also show how to relax the restriction-to-X constraint by initializing an alternating minimization approach with the solution of the convex model, obtaining a dictionary close to but not necessarily in X. We focus on applications of the proposed framework to hyperspectral endmember and abundance identification and also show an application to blind source separation of nuclear magnetic resonance data.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.