By Topic

Modeling the Field Distribution in Deep Brain Stimulation: The Influence of Anisotropy of Brain Tissue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Christian Schmidt ; Institute of General Electrical Engineering, University of Rostock, 18057 Rostock, Germany ; Ursula van Rienen

The neurosurgical method of deep brain stimulation (DBS) is used to treat symptoms of movement disorders like Parkinson's disease by implanting stimulation electrodes in deep brain areas. The aim of this study was to examine the field distribution in DBS and the role of heterogeneous and anisotropic material properties in the brain areas where stimulation is applied. Finite element models of the human brain were developed comprising tissue heterogeneity and anisotropy. The tissue data were derived from averaged magnetic resonance imaging and diffusion tensor imaging datasets. Unilateral stimulation of the subthalamic nucleus (STN) was computed using an accurate model of an electrode used in clinical treatment of DBS extended with an encapsulation layer around the electrode body. Computations of anisotropic and isotropic brain models, which consider resistive tissue properties for unipolar and bipolar electrode configurations, were carried out. Electrode position was varied within an area around the stimulation center. Results have shown a deviation of 2 % between anisotropic and isotropic field distributions in the vicinity of the STN. The sensitivity of this deviation referring to the electrode position remained small, but increased when the electrode position approached areas of high anisotropy.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:59 ,  Issue: 6 )