By Topic

Efficient Classification for Additive Kernel SVMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maji, S. ; Toyota Technol. Inst. at Chicago, Chicago, IL, USA ; Berg, A.C. ; Malik, J.

We show that a class of nonlinear kernel SVMs admits approximate classifiers with runtime and memory complexity that is independent of the number of support vectors. This class of kernels, which we refer to as additive kernels, includes widely used kernels for histogram-based image comparison like intersection and chi-squared kernels. Additive kernel SVMs can offer significant improvements in accuracy over linear SVMs on a wide variety of tasks while having the same runtime, making them practical for large-scale recognition or real-time detection tasks. We present experiments on a variety of datasets, including the INRIA person, Daimler-Chrysler pedestrians, UIUC Cars, Caltech-101, MNIST, and USPS digits, to demonstrate the effectiveness of our method for efficient evaluation of SVMs with additive kernels. Since its introduction, our method has become integral to various state-of-the-art systems for PASCAL VOC object detection/image classification, ImageNet Challenge, TRECVID, etc. The techniques we propose can also be applied to settings where evaluation of weighted additive kernels is required, which include kernelized versions of PCA, LDA, regression, k-means, as well as speeding up the inner loop of SVM classifier training algorithms.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 1 )