By Topic

What Shape Are Dolphins? Building 3D Morphable Models from 2D Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thomas J. Cashman ; University of Lugano, Lugano ; Andrew W. Fitzgibbon

3D morphable models are low-dimensional parameterizations of 3D object classes which provide a powerful means of associating 3D geometry to 2D images. However, morphable models are currently generated from 3D scans, so for general object classes such as animals they are economically and practically infeasible. We show that, given a small amount of user interaction (little more than that required to build a conventional morphable model), there is enough information in a collection of 2D pictures of certain object classes to generate a full 3D morphable model, even in the absence of surface texture. The key restriction is that the object class should not be strongly articulated, and that a very rough rigid model should be provided as an initial estimate of the “mean shape.” The model representation is a linear combination of subdivision surfaces, which we fit to image silhouettes and any identifiable key points using a novel combined continuous-discrete optimization strategy. Results are demonstrated on several natural object classes, and show that models of rather high quality can be obtained from this limited information.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 1 )