Cart (Loading....) | Create Account
Close category search window
 

Design Independent Query Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Termehchy, Arash ; University of Illinois at Urbana-Champaign, Urbana ; Winslett, M. ; Chodpathumwan, Yodsawalai ; Gibbons, Austin

Real-world databases often have extremely complex schemas. With thousands of entity types and relationships, each with a hundred or so attributes, it is extremely difficult for new users to explore the data and formulate queries. Schema free query interfaces (SFQIs) address this problem by allowing users with no knowledge of the schema to submit queries. We postulate that SFQIs should deliver the same answers when given alternative designs for the same underlying data set. In this paper, we introduce and formally define design independence, which captures this property for SFQIs. We establish a theoretical framework to measure the amount of design independence provided by an SFQI. We show that most current SFQIs provide a very limited degree of design independence. We also show that SFQIs based on the statistical properties of data can provide design independence when the changes in the schema do not introduce or remove redundancy in the data. We propose a novel XML SFQI called Duplication Aware Coherency Ranking (DA-CR) based on information-theoretic relationships among the data items in the database, and prove that DA-CR is design independent. Our extensive empirical study using three real-world data sets shows that the average case design independence of current SFQIs is considerably lower than that of DA-CR. We also show that the ranking quality of DA-CR is better than or equal to that of current SFQI methods.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.