By Topic

On Generalizable Low False-Positive Learning Using Asymmetric Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wu, Shan-Hung ; National Tsing Hua University, Hsinchu ; Lin, Keng-Pei ; Chien, Hao-Heng ; Chen, Chung-Min
more authors

The Support Vector Machines (SVMs) have been widely used for classification due to its ability to give low generalization error. In many practical applications of classification, however, the wrong prediction of a certain class is much severer than that of the other classes, making the original SVM unsatisfactory. In this paper, we propose the notion of Asymmetric Support Vector Machine (ASVM), an asymmetric extension of the SVM, for these applications. Different from the existing SVM extensions such as thresholding and parameter tuning, ASVM employs a new objective that models the imbalance between the costs of false predictions from different classes in a novel way such that user tolerance on false-positive rate can be explicitly specified. Such a new objective formulation allows us of obtaining a lower false-positive rate without much degradation of the prediction accuracy or increase in training time. Furthermore, we show that the generalization ability is preserved with the new objective. We also study the effects of the parameters in ASVM objective and address some implementation issues related to the Sequential Minimal Optimization (SMO) to cope with large-scale data. An extensive simulation is conducted and shows that ASVM is able to yield either noticeable improvement in performance or reduction in training time as compared to the previous arts.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 5 )