By Topic

De Novo Design of Potential RecA Inhibitors Using MultiObjective Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sengupta, S. ; Machine Intell. Unit, Indian Stat. Inst., Kolkata, India ; Bandyopadhyay, S.

De novo ligand design involves optimization of several ligand properties such as binding affinity, ligand volume, drug likeness, etc. Therefore, optimization of these properties independently and simultaneously seems appropriate. In this paper, the ligand design problem is modeled in a multiobjective using Archived MultiObjective Simulated Annealing (AMOSA) as the underlying search algorithm. The multiple objectives considered are the energy components similarity to a known inhibitor and a novel drug likeliness measure based on Lipinski's rule of five. RecA protein of Mycobacterium tuberculosis, causative agent of tuberculosis, is taken as the target for the drug design. To gauge the goodness of the results, they are compared to the outputs of LigBuilder, NEWLEAD, and Variable genetic algorithm (VGA). The same problem has also been modeled using a well-established genetic algorithm-based multiobjective optimization technique, Nondominated Sorting Genetic Algorithm-II (NSGA-II), to find the efficacy of AMOSA through comparative analysis. Results demonstrate that while some small molecules designed by the proposed approach are remarkably similar to the known inhibitors of RecA, some new ones are discovered that may be potential candidates for novel lead molecules against tuberculosis.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 4 )