By Topic

The synthesis of linear Finite State Machine-based Stochastic Computational Elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Peng Li ; Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, USA ; Weikang Qian ; Marc D. Riedel ; Kia Bazargan
more authors

The Stochastic Computational Element (SCE) uses streams of random bits (stochastic bits streams) to perform computation with conventional digital logic gates. It can guarantee reliable computation using unreliable devices. In stochastic computing, the linear Finite State Machine (FSM) can be used to implement some sophisticated functions, such as the exponentiation and tanh functions, more efficiently than combinational logic. However, a general approach about how to synthesize a linear FSM-based SCE for a target function has not been available. In this paper, we will introduce three properties of the linear FSM used in stochastic computing and demonstrate a general approach to synthesize a linear FSM-based SCE for a target function. Experimental results show that our approach produces circuits that are much more tolerant of soft errors than deterministic implementations, while the area-delay product of the circuits are less than that of deterministic implementations.

Published in:

17th Asia and South Pacific Design Automation Conference

Date of Conference:

Jan. 30 2012-Feb. 2 2012