By Topic

Automatic atlas-based three-label cartilage segmentation from MR knee images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper proposes a method to build a bone-cartilage atlas of the knee and to use it to automatically segment femoral and tibial cartilage from T1 weighted magnetic resonance (MR) images. Anisotropic spatial regularization is incorporated into a three-label segmentation framework to improve segmentation results for the thin cartilage layers. We jointly use the atlas information and the output of a probabilistic k nearest neighbor classifier within the segmentation method. The resulting cartilage segmentation method is fully automatic. Validation results on 18 knee MR images against manual expert segmentations from a dataset acquired for osteoarthritis research show good performance for the segmentation of femoral and tibial cartilage (mean Dice similarity coefficient of 78.2% and 82.6% respectively).

Published in:

Mathematical Methods in Biomedical Image Analysis (MMBIA), 2012 IEEE Workshop on

Date of Conference:

9-10 Jan. 2012