By Topic

Implementation of MapReduce-based image conversion module in cloud computing environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hyeokju Lee ; Division of Internet & Multimedia Engineering, Konkuk University, Seoul Korea ; Myoungjin Kim ; Joon Her ; Hanku Lee

In recent years, the rapid advancement of the Internet and the growing number of people using social networking services (SNSs) have facilitated the sharing of multimedia data. However, multimedia data processing techniques such as transcoding and transmoding impose a considerable burden on the computing infrastructure as the amount of data increases. Therefore, we propose a MapReduce-based image-conversion module in cloud computing environment in order to reduce the burden of computing power. The proposed module consists of two parts: a storage system, i.e., Hadoop distributed file system (HDFS) for image data and a MapReduce program with a Java Advanced Imaging (JAI) library for image transcoding. It can process image data in distributed and parallel cloud computing environments, thereby minimizing the computing infrastructure overhead. In this paper, we describe the implementation of the proposed module using Hadoop and JAI. In addition, we evaluate the proposed module in terms of processing time under varying experimental conditions.

Published in:

The International Conference on Information Network 2012

Date of Conference:

1-3 Feb. 2012