By Topic

The Cooling and Safety Design of a Pair of Binary Leads for the MICE Coupling Magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Wang, L. ; Shanghai Inst. of Appl. Phys., Shanghai, China ; Sun, S. ; Cao, Y. ; Yin, L.X.
more authors

The key to being able to operate the superconducting solenoids in the Muon Ionization Cooling Experiment (MICE) using cryocoolers running at around 4.2 K is the application of high temperature superconducting (HTS) leads. Because the MICE magnets are not shielded, all of them will have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads depends strongly on the HTS material used for the leads, the magnetic field and their warm end temperature. A pair of binary leads consisting of copper leads and HTS leads made from oriented multiple strands of BSCCO wires will be used for electrical transfer of the MICE coupling magnet for the purpose of reducing the heat leak through the leads to 4.2 K region. This paper mainly discusses the detailed design of the HTS leads and their cooling. Protection for the HTS leads during a power failure is discussed as well.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )