By Topic

Applying feature bagging for more accurate and robust automated speaking assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lei Chen ; Educ. Testing Service, Princeton, NJ, USA

The scoring model used in automated speaking assessment systems is critical for achieving accurate and robust scoring of speaking skills automatically. In the automated speaking assessment research field, using a single classifier model is still a dominant approach. However, ensemble learning, which relies on a committee of classifiers to predict jointly (to overcome each individual classifier's weakness) has been actively advocated by the machine learning researchers and widely used in many machine learning tasks. In this paper, we investigated applying a special ensemble learning method, feature-bagging, on the task of automatically scoring non-native spontaneous speech. Our experiments show that this method is superior to the method of using a single classifier in terms of scoring accuracy and the robustness to cope with possible feature variations.

Published in:

Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on

Date of Conference:

11-15 Dec. 2011