By Topic

Improved spoken term detection using support vector machines with acoustic and context features from pseudo-relevance feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsung-wei Tu ; Graduate Institute of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan ; Hung-yi Lee ; Lin-shan Lee

This paper reports a new approach to improving spoken term detection that uses support vector machine (SVM) with acoustic and linguistic features. As SVM is a good technique for discriminating different features in vector space, we recently proposed to use pseudo-relevance feedback to automatically generate training data for SVM training and use SVM to re-rank the first-pass results considering the context consistency in the lattices. In this paper, we further extend this concept by considering acoustic features at word, phone and HMM state levels and linguistic features of different order. Extensive experiments under various recognition environments demonstrate significant improvements in all cases. In particular, the acoustic features at the HMM state level offered the most significant improvements, and the improvements achieved by acoustic and linguistic features are shown to be additive.

Published in:

Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on

Date of Conference:

11-15 Dec. 2011