By Topic

Model-based fuzzy control for two trailers problem: stability analysis and design via linear matrix inequalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Tanaka ; Dept. of Human & Mech. Syst. Eng., Kanazawa Univ., Japan ; T. Taniguchi ; H. O. Wang

We design a backward movement control system for a vehicle with two trailers via a model-based fuzzy control technique. A Takagi-Sugeno fuzzy model is constructed to describe the nonlinear dynamics of the vehicle. The so-called parallel distributed compensation is employed to determine a control rule structure of a fuzzy controller from the fuzzy model of the vehicle. The parameters of the fuzzy controller are obtained via the linear matrix inequality (LMI) based design with respect to the decay rate, constraint on the control input and constraint on the output. Simulation and experimental results show that the fuzzy controller designed effectively achieves the backward movement control of the articulated vehicle without using the jack-knife phenomenon

Published in:

Fuzzy Systems, 1997., Proceedings of the Sixth IEEE International Conference on  (Volume:1 )

Date of Conference:

1-5 Jul 1997