By Topic

Fast speaker diarization using a high-level scripting language

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gonina, E. ; Univ. of California, Berkeley, CA, USA ; Friedland, G. ; Cook, H. ; Keutzer, K.

Most current speaker diarization systems use agglomerative clustering of Gaussian Mixture Models (GMMs) to determine “who spoke when” in an audio recording. While state-of-the-art in accuracy, this method is computationally costly, mostly due to the GMM training, and thus limits the performance of current approaches to be roughly real-time. Increased sizes of current datasets require processing of hundreds of hours of data and thus make more efficient processing methods highly desirable. With the emergence of highly parallel multicore and manycore processors, such as graphics processing units (GPUs), one can re-implement GMM training to achieve faster than real-time performance by taking advantage of parallelism in the training computation. However, developing and maintaining the complex low-level GPU code is difficult and requires a deep understanding of the hardware architecture of the parallel processor. Furthermore, such low-level implementations are not readily reusable in other applications and not portable to other platforms, limiting programmer productivity. In this paper we present a speaker diarization system captured in under 50 lines of Python that achieves 50-250× faster than real-time performance by using a specialization framework to automatically map and execute computationally intensive GMM training on an NVIDIA GPU, without significant loss in accuracy.

Published in:

Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on

Date of Conference:

11-15 Dec. 2011