By Topic

Design aspects of network assisted device-to-device communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Device-to-device (D2D) communications underlaying a cellular infrastructure has been proposed as a means of taking advantage of the physical proximity of communicating devices, increasing resource utilization, and improving cellular coverage. Relative to the traditional cellular methods, there is a need to design new peer discovery methods, physical layer procedures, and radio resource management algorithms that help realize the potential advantages of D2D communications. In this article we use the 3GPP Long Term Evolution system as a baseline for D2D design, review some of the key design challenges, and propose solution approaches that allow cellular devices and D2D pairs to share spectrum resources and thereby increase the spectrum and energy efficiency of traditional cellular networks. Simulation results illustrate the viability of the proposed design.

Published in:

Communications Magazine, IEEE  (Volume:50 ,  Issue: 3 )