Cart (Loading....) | Create Account
Close category search window
 

Stabilized Large Mode Area in Tapered Photonic Crystal Fiber for Stable Coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Uthman, M. ; Sch. of Eng. & Math. Sci., City Univ. London, London, UK ; Rahman, B.M.A. ; Kejalakshmy, N. ; Agrawal, A.
more authors

A rigorous modal solution approach based on the numerically efficient finite element method (FEM) has been used to design a tapered photonic crystal fiber with a large mode area that could be efficiently coupled to an optical fiber. Here, for the first time, we report that the expanded mode area can be stabilized against possible fabrication tolerances by introducing a secondary surrounding waveguide with larger air holes in the outer ring. A full-vectorial -field approach is employed to obtain mode field areas along the tapered section, and the Least Squares Boundary Residual (LSBR) method is used to obtain the coupling coefficients to a butt-coupled fiber.

Published in:

Photonics Journal, IEEE  (Volume:4 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.