Cart (Loading....) | Create Account
Close category search window
 

Electrical and Optical Performance Investigation of Si-Based Ultrashallow-Junction \hbox {p}^{+}\hbox {-}\hbox {n} VUV/EUV Photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lei Shi ; Electron. Instrum. Lab., Delft Univ. of Technol., Delft, Netherlands ; Nihtianov, S. ; Sha Xia ; Nanver, L.K.
more authors

Recently, a silicon-based ultrashallow-junction photodiode (B-layer diode) has been reported, with very high and very stable sensitivity in the vacuum-ultraviolet and extreme-ultraviolet spectral ranges. However, the ultrashallow nature of the junction leads to a high series resistance of the photodiode if no conductive capping layers are used. In a recent paper by Shi , a study on the relation between the sensitivity and the series resistance of the B-layer diodes, which can be large due to the shallow-junction depth, was presented. In this paper, an extensive analysis of the photodiode electrical and optical performance parameters and their interrelation is given. The influence of the series resistance on the response time of the photodiode for different illumination patterns is studied theoretically and also experimentally verified. It has been proven by modeling, simulations, and experiments that the time constant of the photodiode does not change significantly with the illumination spot area. This effect is due to temporary variations, going in opposite directions, of the equivalent series resistance, and the junction capacitance values found at the first instant a photogenerated charge are locally stored in the photodiode p-n junction. Also, the dependence of the degradation of the sensitivity on the incident wavelength and the diode vertical stack is examined through analysis and experimentation.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:61 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.