By Topic

An efficient agent based framework for distributed medical databases (Revised August 2011)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Atteya, W.A. ; Sch. of Comput., Inf. & Media, Bradford Univ., Bradford, UK ; Dahal, K. ; Hossain, M.A.

Many algorithms have been proposed for the discovery of association rules. The efficiency of these algorithms needs to be improved to handle real-world large datasets. Specifically, for data stored in heterogeneous and geographically distributed healthcare centers. This efficiency can be determined mainly by three factors. The way candidates are generated, the way their supports are counted and the data structure used. Most papers focus on the first and the second factors while few focus on the underlying data structures. In this paper, we present a distributed Multi-Agent based algorithm for mining association rules in distributed environments. The distributed MAS algorithm uses Bit vector data structure that was proved to have better performance in centralized environments. The algorithm is implemented in the context of Multi-Agent systems and complies with global communication standard Foundation for Intelligent Physical Agents (FIPA). The distributed Multi-Agent based algorithm with its new data structure improves implementations reported in the literature that were based on Apriori. The algorithm has better performance over Apriori-like algorithms.

Note: This article was mistakenly omitted from the original IEEE Xplore conference submission.  

Published in:

Software, Knowledge Information, Industrial Management and Applications (SKIMA), 2011 5th International Conference on

Date of Conference:

8-11 Sept. 2011