Cart (Loading....) | Create Account
Close category search window

Analysis and Design Optimization of Robust Aperiodic Micro-UAV Swarm-Based Antenna Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Namin, F. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Petko, J.S. ; Werner, D.H.

Micro-UAV swarm-based antenna arrays provide a novel solution for high-risk radar imaging applications. These apertures lack a single point of failure by distributing their resources and sensors across multiple platforms. However, turbulence and positional errors provide a challenging operational environment when it comes to the implementation of these systems. Turbulence can limit the aperture's ability to coherently resolve a target and cause aircrafts to collide in midair if the formation is too tightly packed with closely spaced elements. This paper introduces several techniques that can reduce the effects of turbulence on the system. First, a phase compensation algorithm is presented that can eliminate the effects of turbulence on the main beam of the array. In addition, sparse antenna apertures can be used to create flight formations that reduce the probability of midair collisions. Traditional periodic apertures are insufficient because these arrays display grating lobes at wide interelement spacings. Therefore, two aperiodic array optimization methodologies are discussed that produce sparse array configurations suitable for micro-UAV formations. These sparse arrays exhibit low peak side-lobe levels without the presence of grating lobes over wide interelement spacings. By combining phase compensation with optimized sparse aircraft formations, one can achieve high radiation pattern resolution in a micro-UAV based radar imaging application.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.