Cart (Loading....) | Create Account
Close category search window
 

Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ouedraogo, R.O. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Rothwell, E.J. ; Diaz, A.R. ; Fuchi, K.
more authors

A new design methodology for producing highly miniaturized patch antennas is introduced. The methodology uses complementary split-ring resonators placed horizontally between the patch and the ground plane. By optimizing the geometry of the split rings, sub-wavelength resonance of the patch antenna can be achieved with a good impedance match and radiation characteristics comparable to those of a traditional patch antenna on a finite ground plane. Construction of the optimized antenna is straightforward, requiring only the sandwiching of two etched circuit boards. High levels of miniaturization are demonstrated through simulations and experiments, with reductions of a factor of more than four in transverse dimension achieved for a circular patch resonant at 2.45 GHz. Although miniaturization is accompanied by a decrease in antenna radiation efficiency and a loss of fractional bandwidth, antenna performance remains acceptable even for a 1/16 reduction in patch area.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.