By Topic

A Koch-Like Sided Fractal Bow-Tie Dipole Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daotie Li ; Key Lab. of Minist. of Educ. of China for Res. & Design of Electromagn. Compatibility of High Speed Electron. Syst., Shanghai Jiao Tong Univ., Shanghai, China ; Jun-Fa Mao

A novel Koch-like fractal curve is proposed to transform ultra-wideband (UWB) bow-tie into so called Koch-like sided fractal bow-tie dipole. A small isosceles triangle is cut off from center of each side of the initial isosceles triangle, then the procedure iterates along the sides like Koch curve does, forming the Koch-like fractal bow-tie geometry. The fractal bow-tie of each iterative is investigated without feedline in free space for fractal trait unveiling first, followed by detailed expansion upon the four-iterated pragmatic fractal bow-tie dipole fed by 50-Ω coaxial SMA connector through coplanar stripline (CPS) and comparison with Sierpinski gasket. The fractal bow-tie dipole can operate in multiband with moderate gain (3.5-7 dBi) and high efficiency (60%-80%), which is corresponding to certain shape parameters, such as notch ratio α, notch angle φ, and base angles θ of the isosceles triangle. Compared with conventional bow-tie dipole and Sierpinski gasket with the same size, this fractal-like antenna has almost the same operating properties in low frequency and better radiation pattern in high frequency in multi-band operation, which makes it a better candidate for applications of PCS, WLAN, WiFi, WiMAX, and other communication systems.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 5 )